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This article presents an algorithm for estimating the signal-to-noise ratio (SNR)
of signals that contain data on a downconverted suppressed carrier or the first
harmonic of a square-wave subcarrier. This algorithm can be used to determine the
performance of the full-spectrum combiner for the Galileo S-band (2.2- to 2.3-GHz)
mission by measuring the input and output symbol SNR. A performance analysis
of the algorithm shows that the estimator can estimate the complex symbol SNR
using 10,000 symbols at a true symbol SNR of —5 dB with a mean of —4.9985 dB
and a standard deviation of 0.2454 dB, and these analytical results are checked
by simulations of 100 runs with a mean of —5.06 dB and a standard deviation of

0.2506 dB.

l. Introduction

Current plans are for the performance of the full-
spectrum recorder (FSR) and full-spectrum combiner
(FSC) for the Galileo S-band (2.2- to 2.3-GHz) mission to
be measured by running symbol-error-rate (SER) curves
on the demodulated data. To do so, one needs to generate
test signals at various points of the system, and the test
signals must be consistent from one point to the other,
which may be difficult. The measurement can only be
done at the output of the demodulator, which means that
if the demodulator is malfunctioning, other modules (e.g.,
the FSR or FSC) cannot be tested. Also, since test signals
are needed, online testing is impossible.

To overcome the disadvantages of measuring the per-
formance from the SER curves, one would like to directly
measure the symbol signal-to-noise ratio (SNR) at various
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points of the system. This means that the symbol SNR has
to be estimated through complex symbols. By complex
symbols, we mean the real symbols at an offset frequency
with in-phase (I) and quadrature (Q) components. This
article presents a complex symbol SNR estimator that es-
timates the symbol SNR of data with I and Q components
of a carrier and/or the first harmonic of a square-wave
subcarrier. This SNR estimator can be used to measure
the performance of the FSC as well as that of the complex
symbol combiner for the Galileo S-band mission.

The technique of the complex symbol SNR estimator is
similar to that of the split-symbol moments estimator [1,2],
except with complex symbols rather than real ones. The
idea behind splitting a real symbol into two halves and
correlating them (originally suggested by Larry Howard
[2]), is to get the signal power by correlating two halves
of a symbol, where the signal parts of the two halves of



the same symbol are correlated but the noises on the two
halves of the symbol are uncorrelated.

The same idea is applied here to the complex symbols,
with the assumption that the offset frequency is known.
The idea is to correlate the first half of a symbol with the
complex conjugate of the second half of the same symbol,
and then to take the real part to get the signal power multi-
plied by a factor that is a function of the offset frequency.
This factor can be divided out if the offset frequency is
known. The same step is repeated for N symbols, and the
results are averaged to get a better estimate of the signal
power.

The signal power plus the noise power can be obtained
by averaging the magnitudes squared of the sums of the
samples in a complex symbol over N symbols. The esti-
mate of the SNR ratio is then readily obtained. In the
next section, a brief description of the complex symbol
SNR estimator is given.

Some practical problems are not considered here. For
instance, the frequency offset may not be known and may
not be a constant. Also, if the symbol synchronization
is off, say by a sample, the performance of the estimator
will be affected, and in the future, the effect needs to be
quantified.

Il. Brief Description of the Estimator

For given samples of I and Q components of baseband
data with an offset frequency w,, we wish to estimate the
symbol SNR. The I and Q components of the [th sample
in the kth symbol are expressed as follows:

m
yIlk = de cOS (onTs + ¢o) + nllk (1)
m .
YQu = de sin (wolTs + ¢o) + Qs (2)
where
{ = 0,..,N,—-1
k= 1,.,N

Here N, is the number of samples per symbol and is as-
sumed to be an even integer, T is the sample period, and
dr = %1 is the kth symbol. The noise samples in the I
and Q channels are assumed to be independent with zero
mean and equal variance o2 /N,. The true symbol SNR is
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m
SNR = —
R 202 (3)

Presented here is an algorithm to estimate this symbol
SNR. First, add all samples in the first half of a symbol
for I and Q separately,

Ns/2-1

Yalk = Z yI,k (4)
=0

Ns/2-1
Yoqi = Z YQux (5)
=0

Repeat the first step for the second half of the symbol

Ns—1

Z Yn (6)

1:N3/2

Y/BIk =

Ng—1

Z YQux (7)

I=N,/2

Ysq. =

Multiply the I component of the first half of a symbol by
that of the second half; do the same for the QQ components;
and add the results. This is equivalent to taking the real
part of the product of the first half and the complex con-
jugate of the second half of a symbol. Repeat the same
procedure for N symbols, and average the results to obtain
the parameter m,

N
1
M = > (Yan,Yon + Yaq.Ysqu)

k=1
1 N
= 7 2R {Ya Y} ®
k=1
where
Yak = Ial +jYan (9)
Ys, = Yp1, +3i¥3q. (10)
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Take the magnitude squared of the complex sum of the
two symbol halves, repeat for N symbols, and average the
results to obtain my,

N
Mss = Z Yo, + Yﬁk (11)

Mathematical expressions for the complex symbol halves
Ya, and Yy, and the parameters m, and m,, are given in
Appendix A in terms of the underlying model parameters
of Egs. (1) and (2). Finally, use m, and m,, to obtain the
estimated symbol SNR

SNR" =

(woTy/2) [ [sinc? (woTsy/4) cos (woTsy/2)]
mss — myp (2+ 2/ cos (woTsy/2))

4my, sinc?

(12)

where w, is the offset angular frequency, and Ty, is the
symbol duration,

Tsy = N,T,

The estimate, SNR*, defined in Eq. (12) is shown in
the next section to have an expected value equal to the
true symbol SNR defined in Eq. (3), plus some bias that
decreases with the number of symbols averaged. The vari-
ance of SNR* is also derived in the next section as a func-
tion of the number of symbols averaged and the true sym-
bol SNR.

lll. Mean and Variance of Symbol SNR
Estimates
In Eq. (12), the estimate of the complex symbol SNR,

SNR*, is a function of the random variables m, and m,;,.
Let g denote that function

SNR* = g(mp, ms,) (13)

Assume that g(m,,m,,) is “smooth” in the vicinity of the
point (7,,7,,), where i, and My, are the means of m,
and m,,, respectively. The expectation of the estimate,
SNR*, can then be approximated by [3, p. 212]
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E{SNR"} = g (M, My,s) +

M| =

0% 8%g o?

2 2 g

< (g + 200 () 5ol g, L)
(14)

where 0,2np and o2,

respectively, and cov (m,,m,,) is their covariance. The
variance of the estimate, SNR*, can be approximated by

(3, p. 212]

8g \? dg \°
2 2 9
OSNR* ~ <_6 p> Om, T <6 ) Tmss

6g dg
3mp Omg,

, are the variances of m, and my,,

+ 2 cov (mp, my,) (15)

In Eqgs. (14) and (15), all the partial derivatives and the
covariance are evaluated at (77,,77,5). Expressions for the
mean and variance of mp, the mean and variance of m;,,
the covariance of m, and m,,, and the partial derivatives
are derived in Appendices B through E, respectively. Sub-
stituting all the terms from the appendices into Eqgs. (14)
and (15), the mean and variance of SNR* are obtained,

E )} = S S
{SNR} = SNR+ 7—; 7

1 5 1
X [—C_?+SNR <Z — g o8 (z))

C2
+ SNRZT1 (1 - cos (z))] (16)
and
2 1 2 4 2
ISNR* = N cos?(z/2) | Ct + SNRC'I2 +SNR

x <Z: - -i—cos (z)) SNR3%12 (1= cos (Z))]

(17)



where

and

_sinc (woTsy/4)
~ sine (woTs/2)

IV. Analysis Verification

Two methods are used to verify the analytical results
of the mean and the variance in the complex symbol SNR
estimation:

(1) Compare the numerical results of the analysis to sim-
ulation results.

(2) Set the offset frequency to zero and compare the
performance of the complex symbol SNR estimator
and that of the real symbol SNR estimator.

A. Simulation Results

Simulation results for the mean and variance of SNR*
are shown in Figs. (1) and (2), and are compared to the
theoretical results of Eqs. (16) and (17). The analytical
and simulation results are also compared in Table 1. In all
cases, the offset frequency, f, = wo/(27), is set at 20 Hz.
The simulation results are based on 100 runs each, and the
simulated means and variances are obtained by averaging
over the 100 runs.

B. Special Case

A special case is when the offset frequency w, = 0. In
this case, the performance of the complex symbol SNR
estimator should reduce to that of the real symbol SNR
estimator given in [1] and [5], with N samples of pure noise
and N samples of the signal plus noise.

For this special case, the mean and variance of the com-
plex symbol SNR estimates reduce to

E{SNR"} = SNR + %(1 + SNR) (18)
1
O2npe = +(2+4SNR + SNR?) (19)

The analysis in [1], which assumed a constant signal level
for all the samples, is easily extended to cover the case of a

signal in only half the samples. The real symbol SNR and
the real estimate, E{SNR*}, in Egs. (17a) and (17b) of [1]
are simply replaced by values SNR and SNR*, respectively,
representing averages over the 2N real samples. These av-
erage values are one-half the corresponding complex SNR
and complex estimate SNR* defined here. With these cor-
respondences, the mean of the real estimate in [1] reduces

to
E‘{SNR*} = SNR + 7\/_1:—1(1 + SNR) (20)

and the variance of the real estimate is

) N \? 1
TN =\ N 1) N_2

N - 1(25NR+1)

x [(SNR2 +2SNR + 1) + ——

(21)

For a large N, Eq. (20) is equivalent to

E{SNR"} = SNR + %(1 + SNR) (22)
and Eq. (21) approximates to

oinpe = %(SNRQ + 4SNR + 2) (23)

Comparing Eq. (18) with Eq. (22), and Eq. (19) with
Eq. (23), it is clear that the special case of the complex
symbol SNR estimator has the same performance as the
real symbol SNR with N signal-plus-noise samples and N
pure noise samples.

V. Conclusions

A complex symbol signal-to-noise ratio estimator is pre-
sented in this article. This estimator modifies the split-
symbol moments estimator for estimating the real symbol
SNR [2] in order to accommodate complex symbols, with
the assumption that the offset frequency is known. This
estimator can be used to measure the performance of the
full spectrum combiner as well as the complex symbol com-
biner for the Galileo S-band mission.
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Table 1. Simulation results of the complex symbol SNR estimation.

Mean of SNR*, dB o of SNR*, dB
SNR, dB N N, Runs
Theory Simulation Theory Simulation
-2 —1.9968 —2.0039 0.2956 0.2834 2,500 10 100
-2 —1.9984 —2.0136 0.2112 0.1937 5,000 10 100
-5 —4.9985 —5.0589 0.2454 0.2506 10,000 10 100
-8 —7.9986 —8.0437 0.3056 0.2787 20,000 10 100
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Appendix A

Sums of the Halves of a Symbol and Definitions of m, and m_,

The sum of the first half of the kth symbol is

Ns/2-1
Z _Jv_dkej(onsl + ¢o) + Ny
1=0 s

(1/4weTsy = 1/205Ts + $,) 510 (WoTsy/4)

1 .
—_ - J
= 2mdke sinc (woTs/2)

(A-1)

+ N,
and the sum of the second half of the kth symbol is

Ng—1
m ,
Ys, = Z deeJ(onsl + ¢o) + ng,
I:Ns/Z

1 — gi(woTsNs/2)

m .
_ e j(woTsNs/2 + ¢o)
- dke 1-— gjons

L1

+ g,

ysine (woTsy /4)

1 .
—_ J(3/4woTsy — 1/2woTs + ¢o
2mdke sinc (w,T5/2)

+ ng, (A'2)

where the noise terms, nq, and ng,, are complex Gaussian
noises, with each of the components (real and imaginary)
having a variance of ¢2/2. In terms of the in-phase and
quadrature noise samples in Egs. (1) and (2), the complex
noise terms, no, and ng,, are

Ns/2-1

Nay, = Z (nn, +anlk)
=0

(A-3)

and

Ng—-1

nng, = Z (no, +anu=)
I=Ns /9

where j = +/—1.

Let sq, and sg, denote the signal parts of Yy, and Yp,,
respectively. Then Y,, and Yj3, can be expressed as

Yor = Sap + N (A'S)
and

Y, = sp +1p, (A_6)

The product of the sum of the first half of the kth sym-
bol and the conjugate of the sum of the second half of the
same symbol is

YakYEk = So‘ksgk + So‘kn};k + no‘ks,’;k + naknz;k

= lmQEj(—onsy/z) Sin_CQ(onSy/4)_
4 sinc?(w, Ty /2)
(A-7)

* * *
t Saxmp, t Moy S, t Nay g,

Taking the real part of the product, one obtains

woTyy ) sinc? (woTyy/4)

1
R{Ve, Y5, } = 70
{Ya, ﬁk} 4m COS( 2 sincZ(ons/Q)

+ %{sakn;k + 14, 8, + Na, n}}k} (A-8)
Define m, as

N
mp =Y R{Ya, Y5}

k=1

(A-9)
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ng = ny, +ank (A—l?)

The sum of the whole kth symbol is
where sy, sg, and nj,, ng, denote the I and Q com-

ponents of the signal and the noise in the kth symbol.

Ns—1
Y, = Z I dpei(weTsl + ¢0) 4
=0 ¢ Furthermore, Y} can be expressed as
m . 1 — GJLUOTSNS . .
— ¢o Y = -
—]v—sdkej 1= ciooTs + ng k= S5, +38Q, Ty, +ing, (A 13)
= mdkgf(l/z‘“oTsy - 1/2w,Ts + &) sinc (wo T4y /2) + g The sum squared of the kth symbol is
sinc (w,T5/2)
)
2 gsine” (woTsy/2) 9 .
= sk + 1k (A-10) Yel" = m sinc® (onsy/Q) * Il + 2R {mesi}
where s is the signal part of the whole symbol and ny is 202 2 «
: . . . . = 5 ' 2R {n s}, -
a complex Gaussian noise with a variance of o2 in each mCy o el 4 BR{nesi} (A-14)
component (real and imaginary), and
where
Sk = Sa, +5p,
o2 = sine? (woTey/2)
ng = Ng, + N, “ sinc?(w, Ty /2)
Note that the signal and noise parts of a whole complex
. . Define m,, as
symbol, s and ng, can also be expressed in terms of their
in-phase and quadrature components, that is,
1‘\"‘
Mss = |YK |2 (A'ls)
(A-11) 2

Sk = S, +J5Qu
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Appendix B

Evaluation of the Mean and Variance of m,

All the expectations in the following are conditional on
knowing the symbol synchronization.

LN
E{my} = > E{U:}
k=1

_1 ysinc? (woTsy/4) cos (on )

=m e
4 sinc? (woTs/2) 2

N
1 * * *
+5 Z E{R{sa, 1}, + "ax 55, + Ny, }}
k=1

1 ,sinc? (woTyy/4) cos (on,y ) (B-1)

4™ “sinc? (woTs/2) 2

where

Uk = R{Ya, Y5, }
= %{(Sak + nak)(szk + "Zik)}

and s,, and sg, denote the signal part of Y,, and Yp,,
respectively, as in Egs. (A-5) and (A-6). The last step
in Eq. (B-1) follows from the independence of the noises
with zero mean in the two halves of each symbol. Note
that Tyy = N,T;.

Because the {U;} are independent, the variance of m,
can be computed as [4, p. 352]

2 1 al 2
Tmy = N2 >t (B-2)
k=1

Now let subscripts I and @ denote the in-phase and
quadrature components of the signals. The second mo-
ment of Uy can be expressed as

2
g,
E{U}?} = ?nE {S%Ik t stzﬂk + sﬁz’Qk + SCZYQk}

4
In

3

2
+ E’{(‘_salksﬁlk + SanSﬁQk) }

_ ﬁ%sincz(on,y/4) ﬁ + ﬁ
2 sinc?(w,T,/2) 2 2

+ B{(sar,$p1. + 50@.56Q:)" } (B-3)

Combining Egs. (B-1), (B-3), and (B-2) yields

0.4
o2 == (zm ——«—0,21—1-7") (B-4)

9 1 (1 osinc? (woTyy/4)
™ N \4  sinc® (w,Ts/2)
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Appendix C

Evaluation of the Mean and Variance of m_,

The mean of m,, is
1 N

E{m,,} = E{WZ,YHZ}
k=1

N N
1 1
= m?C2 + v S Enl* + ¥ > E{R{ns;}}
k=1 k=1

= m?C% + 20}, (C-1)
To find the variance of my;, let
Ve =[Yil”
=Yj, +Yg,
= (s5, +n1,)" + (s, +ng,)” (C-2)

where Y7,, Yo., 51, 8Qx, NI., and ng, are defined in Ap-
pendix A. Because the {V;} are independent, the variance
of m,, can be expressed in terms of the variance of V} [4,

p. 352],

N
1
Thgs = 7\,—220‘24 (C-3)
k=1
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oy, = E{V{’} — (B{Vi})? (C-4)
where
E*{V} = E*{my,}
= (m’Cj} + 202)? (C-5)

Expanding V}?, take the expectation of V}?; apply
E{n}} = E{nd,} = o2, E{n}} = E{n},} =0, and
E{n} } = E{n},} = 30} [3, p. 147]; and use the indepen-
dence of ny, and ng,, and one will obtain

E{VZ} =801 + 802(s], +55,) + (s], +55,)°

x 808 + 8m2Ciol + m*C; (C-6)
The variance of Vi becomes
oy, =4m*Ciol + 4o} (C-7)
Finally, the variance of m,, can be written as
ol = % [4m?C2o? + 40%] (C-8)



Appendix D

Evaluation of the Covariance of m, and m,,

The covariance of m, and m;;, is defined as

cov (mp, mss) = E{(mp — My )(Mes — Mss)}

= E{mym,,} — My, (D-1)
As in Appendices B and C, let
Ur = R{Ya, Y5, }
= Yon, Ypr. + YaQi Ysau
= (ar, + Mar, )(8p;, +7np1,)
+ (Sag, + Mg, (860, +1sq,)  (D-2)
and
Vi = %l

1

s?k + 2sp.nr, + n%k + sék + 25q,nq, + ank
(D-3)

The expectation of the product of U Vi can be expressed
as

E{Uka} =
g';ll + 20’721E{5"’k 561, + Sag, Ska} + E{S?k + Ssz }0'121

+ E{(Si + Sék)(sﬂlk 561, + Sagq, sﬂqk)}

1
=0t +202 (Zmsz cos %)

1
+ o2(m?C2) + m*C3 (ZmzCl2 cos %) (D-4)

where
_sinc (woTyy /4)
"~ sinc (w,T5/2)
_sinc (woTsy /2)
7 sine (woTL/2)
and
2= woTyy
Note that
C?=_C? [1 + cos (w"g’y)]
Then
E{myms} =

1=1,l#k

R N N
N2 [ZE{Uka}JrZE{Uk} > E{Vz}]
k=1 k=1

1
= ¥z [INE{UpVi} + N, (N — 1)) (D-5)
Finally, the covariance of m, and m;, is
1 —
cov (mp,mys) = —ﬁ[E{Uka} — T T,)
1
=~ [m?Cio? + o) (D-6)
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Appendix E

Evaluation of the Partial Derivatives

Denote the following parameters in a convenient form,

4sinc? (w,Ty/2)
sine? (w,Tyy /4) cos (woTsy/2)

[(1 =

2

Ky= ——————<+2
27 os (woTsy/2) +

and

sinc (woTsy/4)

Cr= sinc (woTs/2)

2= wolyy

In terms of K; and K, the estimate SNR* defined in
Eq. (12) is given by

SNR* = g(mp, my;)

[lep (E-l)

mys — Komy

Then g(m,,m,;) = SNR, and the partial derivatives of
this estimator function are

dg

omy

K, szp Ky

T (s — Komy)?

Mes — Kgﬁp

Myp,Mss

1 z 2
TGl [SNR (1+cos§) n C_f]
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82g 2K, ]X’gmp 2K1K,
8m§, 5y s (Tgs — KoTip )3 (T, — KoMy )?

2 cos?(z/4)

z 4

8g _ ]X’lﬁl—p
8m33 Ty, Miss (—Tﬁss - [\”2_77_113)2
= ! SNR (E-4
- 202 -4)
%y B 2K m,
Om2, 7, s (s — Kommip)3
- ! SNR E-5
- 208 (E-5)
a%g _
dm,Omy, 75, s N
2K, Komy, Ky B

(Mss — Komp)? - (M5 — Koty )?

1 z 1
- e [SNR (1 +cos§) ¥ C_%] (E-6)

where the second lines of Eqs. (E-2) through (E-6) are
obtained by substituting the expressions for m, = E{m,}
and m,, = E{m,,} from Appendices B and C.
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